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Abstract: We use the AdS/CFT correspondence to study the thermodynamics of mas-

sive N = 2 supersymmetric hypermultiplet flavor fields coupled to N = 4 supersymmetric

SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of large Nc

and large ’t Hooft coupling. The gravitational duals are probe D-branes in global thermal

AdS. These D-branes may undergo a topology-changing transition in the bulk. The D-

brane embeddings near the point of the topology change exhibit a scaling symmetry. The

associated scaling exponents can be either real- or complex-valued. Which regime applies

depends on the dimensionality of a collapsing submanifold in the critical embedding. When

the scaling exponents are complex-valued, a first-order transition associated with the flavor

fields appears in the dual field theory. Real scaling exponents are expected to be associated

with a continuous transition in the dual field theory. For one example with real exponents,

the D7-brane, we study the transition in detail. We find two field theory observables that

diverge at the critical point, and we compute the associated critical exponents. We also

present analytic and numerical evidence that the transition expresses itself in the meson

spectrum as a non-analyticity at the critical point. We argue that the transition we study

is a true phase transition only when the ’t Hooft coupling is strictly infinite.
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1 Introduction

The Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence is the conjectured

equivalence between N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) theory and type IIB

string theory formulated on the background spacetime AdS5 × S5 [1–3]. Here, AdS5 is a

“Poincaré patch” of five-dimensional anti-de Sitter space, and S5 is a five-sphere. The

AdS5 × S5 spacetime arises as the near-horizon geometry of Nc → ∞ coincident D3-

branes. Taking large Nc, small string coupling gs, and fixed but large gsNc, the low-energy

dynamics of the string theory is well-approximated by type IIB supergravity. In the SYM

theory these correspond to the limits of large Nc and small g2
Y M , but large ’t Hooft coupling

λ ≡ g2
Y MNc.

Thermal equilibrium of the N = 4 SYM theory corresponds to non-extremal D3-branes,

whose near-horizon geometry is five-dimensional AdS-Schwarzschild times S5 [4, 5]. The

temperature of the N =4 SYM theory coincides with the Hawking temperature of the

AdS-Schwarzschild black hole.

The N = 4 SYM theory only contains fields in the adjoint representation of the gauge

group. To make the theory more closely resemble the theory of strong interactions, Quan-

tum Chromodynamics (QCD), we may introduce massive “flavor” fields in the fundamental

representation of the gauge group. We will introduce a finite number Nf of them, so that
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Nf ≪ Nc in the large Nc limit, and work to leading non-trivial order in Nf/Nc. These

flavor fields appear in the supergravity description as Nf probe D-branes [6], or “flavor

branes.” In particular, a probe D7-brane describes a massive N = 2 supersymmetric hy-

permultiplet propagating in 3+1 dimensions and interacting with the N =4 SYM fields.

In the Nf ≪ Nc limit, the contribution that these flavor branes make to the stress-energy

tensor is dwarfed by the contribution of the Nc D3-branes. To leading order in Nf/Nc,

one may neglect the back-reaction of the flavor branes on the geometry, hence the label

“probe.” The flavor brane action is then the Dirac-Born-Infeld (DBI) action characterizing

the embedding of the D-brane in the background spacetime.

In the supergravity description, the embedding of the D7-brane undergoes a topology-

changing transition as the temperature increases. This corresponds in the dual field theory

to a first-order phase transition associated with the flavor fields [7–14]. In refs. [11, 14],

analysis of a general class of probe D-brane systems (based on supersymmetry-preserving

Dp-Dq intersections) revealed that in these systems the transitions associated with probe

D-branes are generically first order.

In ref. [13], two of the present authors analyzed the thermodynamics of flavor fields in

the SYM theory formulated on a 3-sphere. The supergravity dual in this case does not arise

as the near-horizon limit of any known D-brane construction in string theory: N = 4 SYM

formulated on a 3-sphere, in the ’t Hooft limit and at large ’t Hooft coupling, is holograph-

ically dual to supergravity formulated on global AdS, as opposed to Poincaré patch AdS.

From the SYM theory perspective, the 3-sphere introduces a scale into the CFT allowing

for a thermal phase transition. (Without such a scale to set a transition temperature, there

can be no phase transition at any non-zero temperature.) At high temperature, relative

to the inverse 3-sphere radius, the N = 4 SYM theory is in a “deconfined” phase, in which

the free energy scales as N2
c . At low temperature, however, the free energy is order one,

i.e., O(N0
c ). A first-order phase transition separates the two phases. In the supergravity

description, the transition appears as a Hawking-Page transition [4, 15] in which the high-

temperature phase is global AdS-Schwarzschild and the low-temperature phase is global

AdS with a periodic time direction, which we will call global thermal AdS.

We may introduce a probe D7-brane into this background, which now corresponds to

adding a flavor hypermultiplet to N = 4 SYM defined on S3. In the high-temperature phase,

a probe D7-brane undergoes a topology-changing transition that is essentially the same as

that in Poincaré patch AdS-Schwarzschild [7–14]. This, once again, represents a first-order

transition in the flavor physics of the dual field theory [13]. In the low-temperature phase

the probe D7-brane undergoes a different topology-changing transition. The surprising

result of ref. [13] was that this transition does not appear to correspond to a first-order

transition in the SYM theory.

Our goal in this paper is to understand the nature of this transition. To do so, we

will provide a more general context in which to understand the D7-brane’s transition. We

will examine other probe D-branes that are supersymmetric at zero temperature (and in

the Poincaré patch), in particular a probe D5-brane [16–18], which describes flavor fields

propagating in 2+1 dimensions. We will also study the N = 4 SYM theory formulated on

certain other curved manifolds.
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As in refs. [11, 14, 19, 20], an essential tool in our analysis will be scaling symmetries of

probe D-brane embeddings. The crucial ingredient for the arguments of refs. [11, 14, 19, 20]

was that certain scaling exponents associated with probe D-brane embedding solutions were

complex-valued, which implied the existence of infinitely many solutions of the embedding

equations (and boundary conditions). Such “multi-valued” supergravity solutions imply

the presence of discontinuities in SYM theory observables. As external parameters, such

as the hypermultiplet mass, are varied, the physically relevant solution can jump from one

branch to another, leading to discontinuities in generic observables. (The details of the

argument will be reviewed below.)

We will find that the D7-brane in global thermal AdS has real-valued exponents, and

that this will lead to very different physical consequences. Our general analysis will reveal

the condition that determines whether the scaling exponents are complex or real. In the

D-brane’s topology change, we can identify a “critical solution” intermediate between the

two topologies. The dimension of the submanifold that collapses to zero volume in this

critical solution determines whether the scaling exponents will be real or complex.

For the D7-brane in global thermal AdS we will further characterize the transition

by computing two observables that are especially convenient to evaluate using the super-

gravity description: the expectation value of the hypermultiplet mass operator (i.e., the

supersymmetric completion of ψ̄ψ), and the expectation value of a particular supersymmet-

ric Polyakov loop correlator. We will find that both have derivatives that diverge near the

critical point, and we will compute the associated critical exponents. We will also compute

the meson spectrum of the SYM theory from fluctuations of the D7-brane’s worldvolume

fields. We will find that the transition appears in the meson spectrum as a non-analyticity,

a cusp, in the spectrum of one scalar meson. Lastly, we will argue that the transition is

only a genuine phase transition in the flavor physics at infinite ’t Hooft coupling, that is,

the divergences we find in derivatives of the free energy only exist when λ is strictly infinite.

This paper is organized as follows. In section 2 we present in greater detail the systems

that we will study. In section 3, we perform the scaling analysis, compute the scaling

exponents, and present numerical evidence that complex exponents signal a first-order

transition in the SYM theory. In section 4, we compute the critical exponents and meson

spectrum for the SYM theory dual to the probe D7-brane in global thermal AdS, and argue

that the transition will be smoothed out at finite λ. We conclude with a brief discussion

in section 5.

2 The systems in question

We begin with a more precise description of the supergravity systems we will study. After

reviewing global AdS and introducing our conventions, we describe the relevant probe

D-brane embeddings in greater detail.

2.1 The background geometries

We are interested in N = 4 SYM theory formulated on curved spatial sections. We work

in the limits of large Nc and large ’t Hooft coupling, λ ≡ g2
Y MNc ≫ 1 so that, via the
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AdS/CFT correspondence, we may compute observables in the SYM theory using super-

gravity. We are thus interested in global AdS5, whose boundary is a curved four-manifold.

Global AdS5 does not arise from any known string theory construction (such as a near-

horizon geometry of very many D-branes), so we must assume that the conjectured equiv-

alence of theories, originally motivated by the black D3-brane solution of type IIB string

theory [1], can be extended to include supergravity on global AdS5.

As we will be studying the thermodynamics of the SYM theory, we introduce a tem-

perature T in the standard fashion by working in Euclidean signature and compactifying

the time direction into a circle of radius R1 = 1/(2πT ). We will mainly be interested in

the SYM theory formulated on a spatial 3-sphere (times time). We denote the radius of

the 3-sphere as R3. We will thus be studying the SYM theory formulated on boundary

spacetimes such as S1 × S3.

We will use a global thermal AdS5 metric

ds2 = dρ2 + cosh2ρ dτ2 + sinh2ρ dΩ2
3 , (2.1)

where we have set the curvature radius of AdS5 equal to one. We will work in these units

throughout. In these units, we convert between string theory and SYM quantities using

the relation α′−2 = 4πgsNc = g2
Y MNc = λ, where α′ is the square of the string length:

α′ ≡ ℓ2s. In eq. (2.1), ρ is the radial coordinate, τ is the compact Euclidean time coordinate

of period 1/T , and dΩ2
3 is the metric of a unit 3-sphere. The center of the AdS space is at

ρ = 0, and the boundary is at ρ = ∞. Notice in particular that the 3-sphere collapses to

zero volume at the center of AdS.

We will also frequently find another coordinate system convenient, a so-called Fefferman-

Graham coordinate system [21] in which the radial coordinate is z = e−ρ, so that the center

of AdS5 is at z = 1 and the boundary is at z = 0. The global AdS5-Schwarzschild metric,

written in this Fefferman-Graham coordinate system, is

ds2 =
1

z2

[

dz2 + gij dx
idxj

]

, (2.2a)

with

gij dx
idxj ≡ 1

4
(1 − z4/z4

H)2 F(z)−1 dτ2 +
1

4
F(z) dΩ2

3 , (2.2b)

F(z) = 1 − 2z2 + z4/z4
H , (2.2c)

and zH ≡ [1 + 4(πT )4]−1/4 is the horizon radius. Setting zH = 1 produces the global

thermal AdS5 metric, eq. (2.1), in Fefferman-Graham coordinates. Notice that in our units

the radius of the 3-sphere at the boundary is R3 = 1/2.

When discussing global thermal AdS5, we will use the ρ coordinate unless stated

otherwise. When discussing AdS5-Schwarzschild, we will use only the z coordinate.

A Hawking-Page transition [15] connects global thermal AdS5 and global AdS5-Schwarz-

schild. This is a first order transition associated with black hole condensation. The two

metrics written above are both solutions to Einstein’s equation with constant negative cur-

vature and an asymptotic boundary that is S1 ×S3. The difference of the Einstein-Hilbert
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action for these two solutions may be interpreted as a difference in free energies (divided

by the temperature), and thus determines which geometry is thermodynamically preferred.

Thermal AdS5 is preferred (has lower free energy) at low temperatures, but a first-order

transition occurs at a non-zero critical temperature THP = 3
2π (in units of the AdS ra-

dius), above which AdS5-Schwarzschild is preferred [4, 15]. This is a topology-changing

transition: the topology of thermal AdS5 is R
4 × S1 while that of AdS5-Schwarzschild is

R
2 × S3 [4, 15].

This transition is interpreted in the boundary SYM theory as a deconfinement tran-

sition [4]. As the SYM theory is in finite volume, we must be careful to define what we

mean by the word “confinement.” A sufficient definition for our purposes may be given in

terms of the large-Nc behavior of the free energy: if the order N2
c contribution to the free

energy is zero, we declare the theory to be in a confined phase, whereas if the order N2
c

contribution is nonzero we declare the theory to be in a deconfined phase. In this sense,

the N = 4 theory on S1 ×S3 is in a confined phase at low temperature and in a deconfined

phase at high temperature, with a first-order transition separating the two phases. In the

absence of fundamental representation matter fields, this criterion is equivalent to defining

a deconfined phase as one in which the ZNc
center symmetry is spontaneously broken in

the Nc → ∞ limit, which is possible even in finite spatial volume.

Notice also that the only scales in the SYM theory are the temperature T and the radius

of the 3-sphere R3, and hence the only physically meaningful quantity is the dimensionless

product TR3. We may interpret the limit TR3 → ∞ either as a high-temperature limit in

fixed volume or as a large-volume limit at fixed temperature. We will be working in a fixed

volume, so we will interpret this as a high-temperature limit. In this limit our analysis

should agree with any known physics of the finite-temperature SYM theory in flat space.

From the supergravity perspective, our analysis should agree with any known physics in

Poincaré-patch AdS5-Schwarzschild.

In the course of our analysis we will study the SYM theory formulated on other curved

manifolds besides S1×S3. To do so, we will exploit the fact that global AdS admits various

“slicings.” To understand these, recall that at the boundary of AdS space the metric has a

second-order pole. To extract a boundary metric from a bulk AdS metric, we must choose

a defining function which is arbitrary save for one feature: it has a second-order zero at

the boundary. Multiplying the bulk metric by this defining function will produce a finite

boundary metric. Different slicings of AdS are simply coordinate reparameterizations that

naturally suggest different defining functions. Implicitly, we will be using these “natural”

defining functions, which give rise to boundaries with different geometries. We will be

interested in slicings producing the boundary spacetimes1 AdS4, AdS3 × S1, AdS2 × S2,

S1 × S3, and S4. We may write the AdS5 metric for these various slicings as

ds2 = dρ2 + cosh2 ρ ds2AdS4−l
+ sinh2 ρ dΩ2

l (2.3)

1The choice of defining function can also determine the topology of the boundary. For example, a

defining function with a zero at some point on the boundary may encode a collapsing cycle in the boundary

spacetime.
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with dΩ2
l the metric of the unit l-sphere Sl and l = 0, . . . 4. When l ≤ 2, the slicing includes

ds2AdS4−l
, which denotes the AdS4−l metric. We adopt a form for the AdS4−l metric that is

identical to eq. (2.1), except for the replacement of the S3 metric, dΩ2
3, by an S2−l metric,

dΩ2
2−l. When l = 3, we adopt a convention that AdS1 ≡ S1. Notice that the Sl collapses

to zero volume at the center of AdS.

Not all of these boundary spacetimes have finite volume, but all introduce a spatial

curvature scale into the dual SYM theory, allowing the otherwise scale-free N = 4 SYM the-

ory to undergo a thermal transition. We denote the Ricci scalar of the boundary spacetime

as R. For example, in S1 × S3 slicing, R = 6/R2
3.

The supergravity theory is formulated on the ten-dimensional spacetime AdS5 × S5

(or AdS5-Schwarzschild times S5). Convenient forms of the S5 metric that we will use are

dΩ2
5 = dθ2 + sin2 θ dΩ2

4−j + cos2 θ dΩ2
j , (2.4)

where j is any integer from 1 to 4, and θ runs from 0 to π/2.

2.2 Probe Dp-branes

We now introduce Nf flavor fields in the SYM theory, in the Nf ≪ Nc limit, which,

in the supergravity description, corresponds to introducing Dp-branes probing the above

geometries. Let us momentarily consider a background that is Poincaré-patch AdS5 times

S5, corresponding to the N = 4 SYM theory in flat space and at zero temperature. This

geometry arises as the near-horizon limit of a number Nc → ∞ D3-branes [1].

Known supersymmetric embeddings of probe Dp-branes in this background include

D7-branes extended along AdS5 × S3 [6], D5-branes extended along AdS4 × S2 [16–18],

and D3-branes extended along AdS3 × S1 [22]. Introducing D7-branes corresponds in the

SYM theory to introducing N = 2 supersymmetric hypermultiplets that transform in the

fundamental representation of the gauge group and that propagate in 3+1 dimensions.

Introducing D5-branes corresponds to introducing flavor fields that again transform in the

fundamental representation of the gauge group, but that are confined to propagate along

a (2+1)-dimensionsal defect. Similarly, introducing D3-branes corresponds to introducing

flavor fields confined to propagate along a (1+1)-dimensional defect. More generally, any

probe Dp-brane that is not extended along all of the AdS5 directions will be dual to flavor

fields confined to propagate along some defect. In each case, the flavor fields may be

given a supersymmetry-preserving mass m. In the supergravity description, this mass m

is encoded in the geometry of the Dp-brane in a way that we will make explicit below.

In what follows, most of our attention will be focused on Dp-branes that are supersym-

metric in Poincaré-patch AdS5 times S5. In particular, we will present numerical results

for D7-branes and D5-branes. We would like our analysis to be as general as possible,

however, so we will not restrict the p value of the probe Dp-branes we study.

To introduce the Dp-brane’s induced metric and action, we begin in the low-temperature

phase, where the background geometry is global thermal AdS5 × S5 (eqs. (2.1) and (2.4)).

The Dp-branes that we will study will be extended along AdSi ×Sj , for some i and j that

sum to p+1. In other words, the Dp-brane will be extended along an AdSi subspace inside

– 6 –
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global AdS5. This AdSi subspace includes the radial and time directions as well as an

Si−2 inside the S3 of AdS5. The Dp-brane will also be extended along an Sj inside the S5

factor. In the low-temperature phase, we will use the other slicings of global thermal AdS5,

eq. (2.3), only when studying D7-branes, which are extended in all of the AdS5 directions

(i = 5 and j = 3).

The Dp-brane may move in directions orthogonal to its worldvolume. We will allow

the Dp-brane to move in the θ direction defined in eq. (2.4) and, to preserve translation

invariance in the dual field theory, we will allow θ to vary only as a function of the radial

coordinate ρ. In other words, we allow the position of the Sj ⊂ S5 to vary as the Dp-brane

extends in the radial direction. From the Dp-brane worldvolume perspective, θ(ρ) is a

scalar field. As we will review in detail below, this worldvolume scalar is dual to a SYM

theory operator that is the (supersymmetric completion of) the mass operator of the flavor

fields. This is how the mass m is encoded in the geometry of the Dp-brane. The induced

Dp-brane worldvolume metric is

ds2Dp =
[

1 + θ′(ρ)2
]

dρ2 + cosh2ρ dτ2 + sinh2ρ dΩ2
i−2 + cos2θ(ρ) dΩ2

j (2.5)

where the prime denotes differentiation with respect to ρ. In the high-temperature phase,

the embeddings have the same form: AdSi-Schwarzschild times Sj ⊂ S5, and now the

worldvolume scalar θ(z) depends only on z.

To determine θ(ρ), we need an equation of motion and boundary conditions. The equa-

tion of motion comes from the probe Dp-brane action, the Dirac-Born-Infeld (DBI) action,2

SDp = Nf TDp

∫

d(p+1)ζ
√

det(gab) , (2.6)

where TDp = (2π)−pg−1
s α′−(p+1)/2 is the Dp-brane tension, ζa are worldvolume coordinates

and gab is the induced metric on the Dp-brane, eq. (2.5). The Dp-brane metric depends

only on ρ (or z) and hence
√

det(gab) will depend only on ρ (or z), so we will rescale the

Dp-brane action and work with an action density. Among the coordinates ζa, one will be

the radial direction. Another will be the time direction. Integration over this direction

simply produces a factor of 1/T . The Dp-brane additionally has the internal directions of

the Sj ⊂ S5. Integration over these directions will produce the volume of a unit-radius

j-sphere, Vj . For example, the D7-brane has V3 = 2π2. The remaining directions are

spatial directions inside AdSi. In S1×S3 slicing, these are the directions of the Si−2 ⊂ S3.

Integration over these directions then produces a factor of Vi−2. In the various other

slicings, these directions are not all compact, so integration over these directions will not

always yield a finite volume. We will divide both sides of eq. (2.6) by the factor of 1/T

2The full Dp-brane action of course describes the dynamics of a U(1) worldvolume gauge field and all the

worldvolume scalars (including θ(ρ), but also any others), and includes Wess-Zumino terms that describe

the coupling of the Dp-brane fields to background fields, namely Ramond-Ramond form fields and the

Neveu-Schwarz B-field. The equations of motion allow us to set to zero all components of the worldvolume

field strength, as well as any other worldvolume scalars (besides our θ(ρ)), in which case we may safely

ignore the Wess-Zumino couplings and work with the action in eq. (2.6).

– 7 –
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and the integral over the spatial directions inside AdSi, and define an action density

S̃Dp ≡ NDp

∫

dρ
√

det(gab) . (2.7)

where NDp ≡ NfTDpVj. From now on, we will refer to S̃Dp as the Dp-brane action.

To explain the boundary conditions on the worldvolume scalar, we begin in the high-

temperature phase, where the background geometry is global AdS5-Schwarzschild times S5.

We begin here because the story is essentially the same as for Dp-branes in Poincaré-patch

AdS5-Schwarzschild times S5. In the high-temperature phase, two classes of Dp-brane

embedding are possible. In the first class, which we will call “Minkowski” embeddings,

the Sj ⊂ S5 that the Dp-brane wraps is, at the boundary of AdS5-Schwarzschild, the

maximum-volume equatorial Sj . As the Dp-brane extends into AdS5-Schwarzschild, the

volume of the Sj shrinks (as described by θ(z)) and, indeed, may shrink to zero volume

at some radius outside the horizon, z = z̄ < zH . The Dp-brane does not extend past z̄,

rather, it appears to end at z̄ [6] and does not intersect the AdS5-Schwarzschild horizon.

Explicitly, the boundary conditions on θ(z) are that θ(z̄) = π
2 , and θ′(z̄) = ∞ in order to

avoid a conical singularity [13]. In the second class of embeddings, which we will call “black

hole” embeddings, the Sj ⊂ S5 shrinks as one moves into the bulk of AdS5-Schwarzschild

but never collapses to zero volume, so the Dp-brane intersects the horizon, thus developing

a worldvolume horizon. Explicitly, we have θ(zH) ∈ [0, π
2 ), and θ′(zH) = 0 in order for the

embedding to be static. These two classes of embedding are distinguished by topology: in

Minkowski embeddings the Sj collapses to zero volume, while in black hole embeddings

only the thermal circle collapses to zero volume, at the horizon. The “critical solution”

has z̄ = zH , that is, the critical Dp-brane ends precisely at the horizon, and both the Sj

and the thermal circle collapse to zero volume.

As first explained in ref. [13], analogous embeddings exist in the low-temperature phase,

but now the center of thermal AdS plays the role of the horizon. Minkowski embeddings

now become “branes ending away from the center,” that is, the Sj ⊂ S5 collapses to zero

volume for some nonzero ρ̄, with boundary conditions θ(ρ̄) = π
2 and θ′(ρ̄) = ∞. Black hole

embeddings become “branes that reach the center,” that is, the Sj ⊂ S5 never collapses

to zero volume, and the Dp-brane extends all the way to ρ = 0, with boundary conditions

θ(0) ∈ [0, π
2 ) and θ′(0) = 0. These two classes of embeddings are again distinguished by

topology: for branes ending away from the center, the Sj ⊂ S5 collapses to zero volume,

while for branes that reach the center, the Si−2 ⊂ AdSi collapses to zero volume. These

embeddings are depicted schematically in figure 1. The critical solution is now a Dp-brane

that ends precisely at the center, so θ(0) = π
2 and both the Sj and Si−2 collapse to zero

volume at ρ = 0.

We will now explain in detail how the mass m of the flavor fields in the SYM the-

ory, and the thermal expectation value of (the supersymmetric completion of) their mass

operator, may be extracted from the Dp-brane geometry. To be concrete, consider the low-

temperature phase. Inserting the worldvolume metric eq. (2.5) into the action eq. (2.7),

we find

S̃Dp = NDp

∫

dρ cosh ρ (sinh ρ)i−2(cos θ)j
√

1 + θ′ 2. (2.8)
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Figure 1. The two topologically distinct Dp-brane embeddings in thermal AdS. The vertical circle

represents the Sj factor inside the S5, which can shrink to zero size in the left configuration, the

horizontal circle represents the Si−2 factor inside of AdSi, which can shrink to zero size in the right

configuration.

If we expand this action in a Taylor series in θ(ρ), we may identify, from the θ(ρ)2 term, a

mass-squared for the worldvolume scalar, M2
θ = −j (in units of the AdS radius). Probe Dp-

branes fall into two classes depending on whether or not M2
θ saturates the Breitenlohner-

Freedman bound [23], M2 ≥ −1
4(i−1)2, for a field in AdSi with mass-squared M2. The

field θ(ρ) for probe D5-branes and D7-branes does not saturate the Breitenlohner-Freedman

bound, while θ(ρ) for probe D3-branes does saturate the Breitenlohner-Freedman bound.

One may relate M2
θ to the dimension ∆ of the SYM theory operator dual to θ(ρ) in

the usual fashion, M2
θ = [∆ − (i−1)]∆. What is the dual operator? The operator dual to

θ(ρ) is given by the variation with respect to m of the SYM theory Lagrangian. We will

denote this operator as Om. For example, consider the probe D7-brane. The dual field

theory in this case is N = 4 SYM theory coupled to N = 2 supersymmetric hypermultiplets

in the fundamental representation of the gauge group. The operator Om is the sum of three

terms: the mass operator for the hypermultiplet fermions, m times the mass operator of

the hypermultiplet scalars, and a term coupling these scalars to an adjoint scalar. The

exact operator is written in ref. [24]. The subscript on Om is a reminder that this operator

depends explicitly on m. For our purposes thinking of Om as the mass operator of flavor

fermions will be sufficient (we will not need the explicit form).

The DBI action, eq. (2.8), yields the equation of motion for θ(ρ). Given a solution, we

can extract the value of m from the asymptotic behavior of θ(ρ) [2, 3]. The asymptotic

behavior is most easily studied (in both the low- and high-temperature phases) using

Fefferman-Graham coordinates,

θ(z) = zi−1−∆
{

θ(0) + z θ(1) + · · · + z2∆−i+1
[

θ(2∆−i+1) + ψ(2∆−i+1) log z
]

+ · · ·
}

. (2.9)

For Dp-branes that do not saturate the Breitenlohner-Freedman bound, the leading term,

with coefficient θ(0), is non-normalizable, while the sub-leading term with coefficient θ(2∆−i+1)

is normalizable. The equation of motion for θ(z) determines all other coefficients in terms

of these two. These two coefficients will be fixed by the boundary conditions explained

above, which thus completely specify the asymptotic behavior. In particular, for these

cases the coefficient θ(0) is related to the mass of the fundamental-representation fields as

m = θ(0)/(2πα
′), or equivalently θ(0) = 2π

√
λm. Notice that θ(0) is dimensionless and that

the right-hand side of this equation is written in units of the AdS radius. From the SYM

theory perspective, in S1 × S3 slicing, the more natural scale is the radius of the 3-sphere,

R3. In our units, R3 = 1/2, so we may write θ(0) = 4πmR3/
√
λ.
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For Dp-branes that do saturate the Breitenlohner-Freedman bound, which have 2∆ =

i−1, the coefficients θ(0) and θ(2∆−i+1) are identical. The leading logarithmic term, with

coefficient ψ(2∆−i+1) = ψ(0), is now non-normalizable, while the term with coefficient θ(0)
is normalizable. In the general analysis of section 3, we will use the notation appropriate

for Dp-branes that do not saturate the Breitenlohner-Freedman bound, namely θ(0) as the

coefficient of the non-normalizable term and θ(2∆−i+1) as the coefficient of the normalizable

term. Converting to Dp-branes that do saturate the Breitenloner-Freedman bound is easy:

simply replace θ(0) → ψ(0) and θ(2∆−i+1) → θ(0).

Following ref. [25], we can extract the thermal expectation value 〈Om〉 from the asymp-

totic coefficients using holographic renormalization. Let F denote the contribution that

the flavor fields make to the free energy density. 〈Om〉 is given by δF
δm . Using the AdS/CFT

correspondence, F is given by the value of the on-shell DBI action eq. (2.7), so we need to

take the variation of the on-shell DBI action with respect to the leading, non-normalizable

asymptotic value of θ(z). The problem that arises in doing this is that the radial integra-

tion will diverge at the boundary, z = 0. In holographic renormalization, we introduce a

regulator by cutting off the integration at some small value, i.e., we integrate only to z = ǫ.

We then introduce counterterms on the z = ǫ hypersurface to cancel divergences before

removing the regulator by sending ǫ→ 0. These counterterms are written in terms of θ(ǫ)

and the induced metric on the z = ǫ hypersurface, whose determinant we denote as γ. We

denote the regulated action, plus counterterms, as S̃reg, so that S̃reg = F . We then have,

for Dp-branes that do not saturate the Breitenlohner-Freedman bound [25, 26],

〈Om〉 = lim
ǫ→0

(

ǫ−∆

√
γ

δS̃reg

δθ(ǫ)

)

. (2.10)

For Dp-branes that do saturate the Breitenlohner-Freedman bound, we must make the

replacement ǫ−∆ → ǫ−∆ log ǫ [25]. The counterterms and explicit formulae for 〈Om〉 for

the D7-brane, D5-brane and D3-brane are given in refs. [13, 25].

Let us illustrate the procedure with an example: the probe D7-brane, which is extended

along AdS5 ×S3 and so has i = 5, j = 3 and M2
θ = −j = −3. The D7-brane thus does not

saturate the Breitenlohner-Freedman bound for AdS5, M
2 ≥ −4. The dual operator Om

has dimension ∆ = 3. θ(z) has an asymptotic expansion

θ(z) = θ(0) z + θ(2) z
3 + ψ(2) z

3 log z + · · · , (2.11)

where ψ(2) is fixed in terms of θ(0) as ψ(2) = 1
12R θ(0). The regulated action is S̃reg =

S̃D7 +
∑

k L̃k, where the counterterms are [13, 25]

L̃1 = −1

4

√
γ , L̃2 =

1

48

√
γRγ , L̃3 = − 1

32
(log ǫ)

√
γ

(

Rγ
ij Rij

γ − 1

3
R2

γ

)

, (2.12a)

L̃4 =
1

2

√
γ θ(ǫ)2 , L̃5 = − 5

12

√
γ θ(ǫ)4 , L̃6 =

1

12
log θ(ǫ)

√
γRγ θ(ǫ)

2 . (2.12b)

where for clarity we have suppressed a factor of ND7 = NfTD7V3 = 1
(2π)4

λNfNc that

appears in every counterterm. Here Rγ
ij and Rγ are the Ricci tensor and Ricci scalar,

– 10 –



J
H
E
P
0
9
(
2
0
0
9
)
0
4
2

respectively, of the induced metric on the z = ǫ hypersurface. Using eq. (2.10), we find

that the thermal expectation value of Om is given by

〈Om〉 = ND7

[

−2θ(2) +
1

3
θ3
(0) +

1

6
R θ(0) log θ(0)

]

. (2.13)

We will also present numerical results for a probe D5-brane, which is extended along

AdS4×S2 and so has i = 4 and j = 2. The D5-brane hasM2
θ = −j = −2 and hence does not

saturate the Breitenlohner-Freedman bound for AdS4, M
2 ≥ −9

4 . The dual operator Om

has dimension ∆ = 2. In this case, the coefficient of the sub-leading, normalizable term is

θ(2∆−i+1) = θ(1). We will not present the counterterms explicitly. The result for the thermal

expectation value of Om is 〈Om〉 = −ND5θ(1) [25], where ND5 = NfTD5V2 = 1
2π3

√
λNfNc.

3 Scaling analysis

In this section we perform a scaling analysis similar to that of refs. [11, 14, 27] for probe

Dp-branes in global thermal AdS, probe Dp-branes in global AdS-Schwarzschild, and probe

D7-branes in the various other slicings of global thermal AdS. We find the relevant scaling

exponents for probe Dp-brane embeddings and determine when those exponents are real

or complex. We also confirm via numerical analysis that complex exponents signal a first

order transition in the dual SYM theory.

3.1 Probe Dp-branes in S1 × S3 slicing: low-temperature phase

We begin with probe Dp-branes in global thermal AdS, corresponding to the SYM theory

in the low-temperature, confined phase. We first note that the flavor physics, within the

low temperature phase of the SYM theory, is completely independent of temperature.

The global thermal AdS metric eq. (2.1) does not depend on the temperature T , which

thus appears in the DBI action eq. (2.6) only via an overall factor from integration over

the thermal S1 (which is then hidden in the rescaled action eq. (2.7)). Consequently,

the equation of motion for θ(ρ), and its boundary conditions, are T -independent. As a

result, the expectation value 〈Om〉 in the dual SYM theory will be independent of T . This

temperature independence is not unexpected — it is a property of the leading large-Nc

behavior of generic observables (not involving Wilson loops which wrap the thermal circle)

in the low temperature phase of non-Abelian gauge theories [28–30]. Our supergravity

analysis is thus valid for any temperature below the Hawking-Page transition temperature,

T < THP = 3
2π . The remaining relevant scales in the SYM theory are the hypermultiplet

mass m and the radius R3 of the 3-sphere. The physics we are interested in will depend

only on these scales, or more accurately on their dimensionless product mR3.

We now turn to the scaling analysis. We focus on the region near the center of AdS,

and expand the metric to leading nontrivial order using sinhρ ≈ ρ, cosh ρ ≈ 1. We first

consider the critical solution, that, is, fluctuations of the form θ(ρ) = π/2+δθ(ρ) with δθ(ρ)

small. We may then use cos θ ≈ −δθ. The critical solution has the boundary condition

δθ(0) = 0. The Dp-brane action, eq. (2.8), becomes

S̃Dp = NDp

∫

dρ ρi−2 δθj
√

1 + δθ′ 2 , (3.1)
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a β±

7 −3 ±
√

2

6 −5
2 ± 1

2

5 −2 ± i

4 −3
2 ± i

√
7

2

3 −1 ± i
√

2

2 −1
2 ± i

√
7

2

Table 1. Scaling exponents β± for probe Dp-branes whose critical solution has a collapsing sub-

manifold of dimension a.

with, once again, i+ j = p+ 1. The resulting equation of motion for δθ(ρ) is

ρ δθ δθ′′ +
[

(i−2)δθ δθ′ − jρ
]

(1 + δθ′ 2) = 0 . (3.2)

This equation has an important scaling symmetry under which

δθ(ρ) → µ δθ(ρ) and ρ→ µρ , (3.3)

for real, positive µ. In other words, a single solution δθ(ρ) = f(ρ) gives rise to a one-

parameter family of solutions δθ(ρ) = µ−1f(µρ). The solution of eq. (3.2) for the critical

embedding, which we denote δθ∗(ρ), is

δθ∗(ρ) ≡ ρ

√

j

i−2
. (3.4)

Notice that δθ∗(ρ) is invariant under the scaling transformation.

Next, we seek solutions near the critical one, still in the near-center region, of the form

δθ(ρ) = δθ∗(ρ) + ξ(ρ) . (3.5)

The fluctuation ξ(ρ) has the linearized equation of motion

ρ2 ξ′′ + a ρ ξ′ + a ξ = 0 , (3.6)

with a = j + (i− 2). This has solutions ξ(ρ) = ±ρβ± with

β± =
1

2

[

(1 − a) ±
√

a2 − 6a+ 1
]

. (3.7)

The β± are the scaling exponents. Depending on the value of a, the scaling exponents β±
may be real or complex. Physically, a = j + (i − 2) is the dimension of the sub-manifold
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of the Dp-brane worldvolume that collapses to zero volume in the critical solution: the j

dimensions of the Sj ⊂ S5 and the i−2 dimensions of the Si−2 ⊂ AdSi. For the present

case of probe Dp-branes in S1 × S3 slicing, the dimension a of the collapsing submanifold

is simply p−1, but this will not be the case in subsequent examples.

Explicit values of the exponents, for various choices of a, appear in table 1. As shown

in the table, the critical value of a is 6: for a < 6 the near-center, near-critical solutions

have complex exponents, while for a ≥ 6 they have real exponents.

The perturbed solution,

δθ(ρ) = δθ∗(ρ) + α+ ρ
β+ + α− ρ

β− , (3.8)

must obey the scaling symmetry. This implies that the coefficients α± must scale as

α± → µ1−β± α± . (3.9)

The coefficients α± are determined by the boundary conditions, specifically, the value of

ρ̄ or θ(0). This is why α± are “charged” under the scaling transformation: because ρ̄ and

θ(0) are not invariant under scaling.

A solution that is near the critical solution in the near-center region will remain so all

the way out to the asymptotic region.3 The boundary condition deep inside AdSi (the value

of ρ̄ or θ(0)) must fix both the asymptotic coefficients θ(0) and θ(2∆−i+1) and the near-center

coefficients α±. The asymptotic coefficients can thus be thought of as functions of the near-

center coefficients. Sufficiently close to the critical solution, the α± will be very small and

hence the asymptotic coefficients may be linearly related to the near-center coefficients.

Put more simply, we may Taylor expand θ(0) and θ(2∆−i+1) to linear order in α±. Let θ∗(0)
and θ∗(2∆−i+1) denote the asymptotic coefficients of the critical solution. We then have, for

a near-critical solution,

θ(0) − θ∗(0) = A+
(0) α+ +A−

(0) α− , (3.10a)

θ(2∆−i+1) − θ∗(2∆−i+1) = A+
(2∆−i+1) α+ +A−

(2∆−i+1) α− , (3.10b)

for some set of coefficients A±. Notice that the overall sign of ξ(ρ) is arbitrary, so the form

of eq. (3.10) is valid for both θ(0) < θ∗(0) and θ(0) > θ∗(0), that is, for Dp-branes that end at

the center and for Dp-branes that end away from the center. We may now ask what the

scaling transformation of the α±, eq. (3.9), teaches us about the asymptotic coefficients,

and what we may then conclude in the SYM theory about the behavior of 〈Om〉 as a

function of m.

For complex β±, if we perform the scaling transformation eq. (3.9) we find that, as

functions of µ, (θ(0) − θ∗(0)) and (θ(2∆−i+1) − θ∗(2∆−i+1)) will acquire terms of the form

µ1−Re β± times either a sine or cosine of Imβ± log µ. Notice that 1 − Reβ± > 0 in all

cases. Consequently, sending µ → 0 produces solutions which, in the (θ(0), θ(2∆−i+1))

plane, spiral inward toward a limit point which corresponds to the critical solution. More

3More formally, we expect the critical solution to be an attractor solution as one moves toward the AdS

boundary. In ref. [27], this was shown explicitly for Dp-branes in Poincaré-patch AdS-Schwarzschild.
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Figure 2. (a.) S̃reg/ND5 as a function of θ(0) for the D5-brane probe in global thermal AdS in

S1 × S3 slicing. The red curves correspond to D5-branes that reach the center of AdS while the

black curves correspond to D5-branes that end away from the center. The point at which the red

and black curves meet corresponds to the critical solution. (b.) Close-up of (a.) near the critical

solution. The inset figure shows a further close-up. The vertical line in the inset figure indicates

where the transition occurs, at the critical value θcrit(0) ≈ 2.402.

precisely, the arbitrary overall sign of ξ(ρ) leads to two intertwined spirals, as illustrated

below in figure 3(b).

In the dual field theory, we may argue, following refs. [11, 14], that 〈Om〉 must jump

discontinuously from the outer branch of one spiral to the outer branch of the other as the

mass m is varied. Such discontinuous behavior signals a first-order phase transition. We

then expect discontinuous behavior in generic observables associated with the flavor fields,

of which 〈Om〉 is simply the most convenient to compute from the supergravity perspective.

To be concrete, let us analyze the example of probe D5-branes extended along AdS4 ×
S2, for which a = 4 and β± = −3

2 ± i
√

7
2 . Recall that in this case m = θ(0)/(2πα

′), and

〈Om〉 = −ND5θ(1) where the operator Om has dimension ∆ = 2 and ND5 = 1
2π3λ

1/2NfNc.

Figure 2 shows the value of S̃reg/ND5 for the D5-brane as a function of θ(0), and figure 3

shows the numerical result for solutions in the (θ(0), θ(1)) plane.

In these and all subsequent plots for global thermal AdS, the red curves arise from

Dp-brane solutions that reach the center of AdS, while the black curves arise from Dp-

branes ending away from the center. For global AdS5-Schwarzschild, red curves arise from

Dp-branes that reach the horizon while black curves arise from Dp-branes that end outside

the horizon. The critical solution will thus always be where the red and black curves meet.

In figure 2, we see that the free energy, which is always the minimal value of the

regulated action S̃reg, has a small kink (a discontinuous first derivative) as a function of

θ(0). Since m = θ(0)/(2πα
′), we conclude that a first-order phase transition occurs in the

SYM theory as a function of the mass m. (The free energy is always continuous, but at

a first order transition its first derivative jumps.) The transition occurs at the critical

value4 θcrit
(0) = 4πmR3/

√
λ = 2.400 or equivalently m =

√
λ θcrit

(0) /(4πR3) = 0.191
√
λ/R3.

4Notice that the result for θcrit
(0) as computed from the free energy in figure 2 is θcrit

(0) ≈ 2.402, which is

slightly larger than the value θcrit
(0) ≈ 2.400 obtained from figure 3, where we used an equal-area method.
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Figure 3. (a.) θ(1) as a function of θ(0) for the D5-brane probe in global thermal AdS in S1 × S3

slicing. The red curves correspond to D5-branes that reach the center of AdS while the black curves

correspond to D5-branes that end away from the center. The point at which the red and black curves

meet corresponds to the critical solution. (b.) Close-up of (a.) near the critical solution. The

vertical line indicates where the transition occurs, at the critical value θcrit(0) ≈ 2.400. As we increase

θ(0), moving along the red curve from left to the right, the physical value of θ(1) = −〈Om〉/ND5

jumps upward at θcrit(0) , from the red curve to the top-most arm of the black curve.

Using 〈Om〉 = δF
δm = −ND5θ(1), we see precisely this behavior in figure 3, as θ(1) jumps

discontinuously from one arm of the spiral to the other. When the embedding equations

have multiple solutions for a given value of θ(0), only those solutions that minimize the free

energy (S̃reg) represent genuine equilibrium states. These minimal free-energy solutions

only lie on the outermost branches of the two spiral arms. As shown in refs. [14, 19],

moving inward along the red or black curves toward the critical solution, a new tachyon

appears in the meson spectrum at every turn of the spiral, providing a clear signal of

instability. Notice also that m∗ ∼ 1/R3, as expected from the fact that generic observables

will be T -independent in the low-temperature phase, as mentioned above. Clearly this

transition is a finite-volume effect.

When the scaling exponents β± are real, the story is very different. Now the scal-

ing transformation of eq. (3.9) is a simple rescaling, and no spiral will appear in the

(θ(0), θ(2∆−i+1)) plane. The most interesting example is the probe D7-brane,5 extended

along AdS5 × S3, for which a = 6 and β± = −5
2 ± 1

2 = {−2,−3}. Recall that in this case

m = θ(0)/(2πα
′) and 〈Om〉 is given by eq. (2.13) where the operator Om has dimension

∆ = 3. Recall also that ND7 = 1
(2π)4

λNfNc. Figure 4 shows S̃reg/ND7 as a function of θ(0)
for the D7-brane, which has a continuous first derivative. Figure 5 shows θ(2) as a function of

θ(0), which is single-valued. The critical solution has θ∗(0) ≈ 2.198 and θ∗(2) ≈ 5.230. In terms

of SYM theory quantities, the critical solution has m∗ =
√
λ θ∗(0)/(4πR3) = 0.1748

√
λ/R3.

We attribute the difference to numerical error in estimating the location of the “kink” in figure 2. Here,

and for all subsequent branes, the location of the transition that we will use is that computed from the

equal-area method.
5We have also formally analyzed a D8-brane extended along AdS5 × S4, which has a = 7, and found

behavior similar to that for the D7-brane. A D8-brane carries no conserved charge in type IIB supergravity,

however, and is therefore unstable.
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Figure 4. (a.) S̃reg/ND7 as a function of θ(0) for the D7-brane probe in global thermal AdS in

S1 ×S3 slicing. (b.) Close-up of (a.) near the critical solution. The critical solution (where the red

and black curves meet) has θ∗(0) ≈ 2.198.
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Figure 5. (a.) θ(2) as a function of θ(0) for the D7-brane probe in global thermal AdS in S1 × S3

slicing. (b.) Close-up of (a.) near the critical solution. The critical solution (where the red and

black curves meet) has θ∗(0) ≈ 2.198 and θ∗(2) ≈ 5.230.

(Notice again that m∗ ∼ 1/R3.) We conclude that no first-order transition occurs in the

SYM theory. We expect some kind of non-analyticity in the SYM theory, however, because

in the supergravity description the topology of the D7-brane changes in passing through the

critical solution. In section 4 we will show that certain observables have divergent behavior

at the critical point, and we will examine how this transition affects the meson spectrum.

3.2 Probe Dp-branes in S1 × S3 slicing: high-temperature phase

We will now perform the scaling analysis for probe Dp-branes in global AdS5-Schwarzschild,

corresponding to the SYM theory in the high-temperature, deconfined phase. Our result

will be essentially the same as that of refs. [11, 14]: all probe Dp-branes have complex

exponents β± and hence exhibit a spiral in the (θ(0), θ(2∆−i+1)) plane, implying that first-

order transitions appear in the respective SYM theories. For the D7-brane, this must be

the case in order to agree with the numerical results in S1 ×S3 slicing [13] and in Poincaré

patch AdS5-Schwarzschild [7–9, 11–14], which we interpret as the high-T limit of the theory

formulated on global AdS5-Schwarzschild, as explained in section 2.1.
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The critical solution is now a Dp-brane that ends precisely at the horizon. At the

horizon only the thermal S1 inside AdSi-Schwarzschild collapses to zero volume. This is

the key difference from thermal AdSi. For the critical solution, the Sj ⊂ S5 will still

collapse, but now all probe Dp-brane critical embeddings will have the same collapsing S1.

The Si−2 that collapsed in thermal AdSi are replaced with this S1 in AdSi-Schwarzschild,

so we expect a = j + 1. We can thus jump to the answer: as the largest value of j that

allows for θ(z) is j = 4, none of the Dp-brane probes can have a > 6, and hence all must

have complex β±.

To confirm this, we proceed in the same spirit as above. We now focus on the near-

horizon region. Let z = zH + Z and θ(z) = π
2 + δθ(Z). We expand the metric coefficients

to leading nontrivial order. The induced Dp-brane metric is then

ds2Dp =
(

1 + δθ′ 2
)

dZ2 +
2

z2
H

Z2

1 − z2
H

dτ2 + F(zH) dΩ2
i−2 + δθ2 dΩ2

j . (3.11)

The Dp-brane action, ignoring overall Z-independent constants that do not affect δθ’s

equation of motion, is

SDp ∝
∫

dZZ δθj
√

1 + δθ′ 2 . (3.12)

This is of precisely the same form as eq. (3.1) but with i−2 → 1 so indeed a = j+1 and all

Dp-brane probes will have complex exponents β± and exhibit a spiral in the (θ(0), θ(2∆−i+1))

plane. The action eq. (3.12) is in fact identical to the near-horizon action written in

refs. [11, 14] for Dp-brane probes in the Rindler space that arises as the near-horizon

geometry of Poincaré patch AdS-Schwarzschild.

3.3 Probe D7-brane in other slicings: low-temperature phase

By using different slicings, leading to different boundary geometries, we can change the

dimension of the critical solution’s collapsing submanifold, as different slicings lead to

spheres of different dimension, Sl ⊂ AdS5 for l = 0, . . . , 4, that collapse to zero volume at

the center of AdS5 (see eq. (2.3)). We will focus on the D7-brane and the low-temperature

phase because lower-dimensional Dp-branes, or Dp-branes in the high-temperature phase,

will not be able to reach a ≥ 6. For the D7-brane, the dual SYM theory is N = 4 SYM

theory coupled to massive N = 2 hypermultiplets, formulated on different four-manifolds,

in the low-temperature, confining phase.

Using the AdS4−l × Sl slicing of AdS5, the induced D7-brane metric is

ds2D7 =
[

1 + θ′(ρ)2
]

dρ2 + cosh2ρ ds2AdS4−l
+ sinh2ρ dΩ2

l + cos2 θ(ρ) dΩ2
3 , (3.13)

and the D7-brane action is

S̃D7 = ND7

∫

dρ (cosh ρ)4−l (sinh ρ)l (cos θ)3
√

1 + θ′ 2 . (3.14)

In the near-center limit this becomes

S̃D7 = ND7

∫

dρ ρl δθ3
√

1 + δθ′ 2 (3.15)
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Figure 6. (a.) θ(2) as a function of θ(0) for the D7-brane in AdS2 × S2-sliced thermal AdS5. (b.)

Close-up of (a.) near the critical solution. The vertical line indicates where the transition occurs,

at the critical value θcrit(0) ≈ 1.6557.

which is the same as eq. (3.1), but with i− 2 → l and j = 3, so a = l+ 3 and we will have

complex exponents β± for l = 0, 1, 2 and real exponents β± for l = 3, 4.

As an example of complex exponents, consider the l = 2 case, AdS2 × S2 slicing, with

a = 5 and complex exponents β± = −2 ± i. We expect a spiral in the (θ(0), θ(2)) plane.

Figure 6 shows the numerical result for θ(2) as a function of θ(0), which indeed exhibits a

spiral, so we again have a first-order transition. In this case, the transition occurs at the

critical value θcrit
(0) = m/(2πα′) = 1.6557 or equivalently m =

√
λ θcrit

(0) /(2π) = 0.2635
√
λ

times the inverse of the AdS curvature radius.

We have two examples of real exponents. The first example is the l = 3 case, S1 × S3

slicing, which was examined above (see figures 4 and 5) and will be examined in detail in

the next section. The second example is the l = 4 case, S4 slicing, with a = 7, giving real

exponents, β± = −3±
√

2. We expect θ(2) to be single-valued as a function of θ(0). Figure 7

shows the numerical result for θ(2) as a function of θ(0), which is indeed single-valued. We

have verified numerically that the solutions exhibit scaling behavior with the exponents

β± = −3 ±
√

2. In this case the critical solution has θ∗(0) ≈ 2.6395 and θ∗(2) ≈ 14.5943.

In terms of SYM theory quantities the critical solution has m∗ =
√
λ θ∗(0)/(2π) ≈ 0.42

√
λ

times the inverse of the AdS curvature radius.

4 Characterizing the transition

Let us summarize our story so far. Whether a Dp-brane probe exhibits a spiral in the

(θ(0), θ(2∆−i+1)) plane or not depends upon the value of a, the dimension of the submanifold

of the critical embedding that collapses to zero volume. When a < 6, a spiral does appear

and, as discussed above, we may conclude that the dual SYM theory has a first order phase

transition associated with the flavor fields.

To study what happens when a ≥ 6, we will restrict our attention to the D7-brane

in S1 × S3 slicing. The D7-brane undergoes a topology change, but θ(2) is single-valued
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Figure 7. (a.) θ(2) as a function of θ(0) for the D7-brane in S4-sliced thermal AdS. (b.) Close-up

of (a.) near the critical solution. The critical solution (where the red and black curves meet) has

θ∗(0) ≈ 2.6395 and θ∗(2) ≈ 14.5943.

as a function of θ(0) (or mass). In the SYM theory, we expect a transition to occur, but

evidently it is not first order.

In this section, we will exhibit divergences at the critical point in several observables

in the dual SYM theory, and examine the associated critical exponents. We will also show

that the transition manifests itself in the meson spectrum as a cusp in the spectrum of a

particular scalar meson. We will also argue that the transition will be “smoothed out” for

any large but finite value of λ, or in other words that the transition is an artifact of the

λ→ ∞ limit.

4.1 The Behavior of 〈Om〉

We want to know what the scaling transformation eq. (3.9) implies for the observable 〈Om〉.
Returning to eq. (3.10), we perform the scaling transformation in eq. (3.9), using 1−β+ = 3

and 1 − β− = 4, with the result

θ(0) − θ∗(0) = A+
(0) α+ µ

3 +A−
(0) α− µ

4 , (4.1a)

θ(2) − θ∗(2) = A+
(2) α+ µ

3 +A−
(2) α− µ

4 . (4.1b)

Notice again that, as in eq. (3.10), the form of these equations (and the equations below that

follow from them) is the same for both θ(0) > θ∗(0) and θ(0) < θ∗(0). Using the first equation

to eliminate µ gives, to leading order in the deviation from criticality, µ ∼ (θ(0) − θ∗(0))
1/3.

Plugging this into the second equation will generate a non-analytic (θ(0) − θ∗(0))
4/3 term as

well as an analytic (θ(0) − θ∗(0)) piece. Translating to field theory quantities using θ(0) ∝ m

and eq. (2.13), we find that 〈Om〉 contains non-analytic terms of the form

〈Om〉 ∼ (m−m∗)4/3 + · · · , (4.2)

in addition to contributions analytic in m near m∗. Here · · · is an expansion in higher

powers of (m−m∗)1/3. The key point is that 〈Om〉 has a divergent second derivative with
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respect to m at m∗. The expectation 〈Om〉 is the derivative of the free energy F with

respect to m, and hence the third derivative of the free energy diverges as m→ m∗,

∂3

∂m3
F ∼ (m−m∗)−2/3 , (4.3)

from which we identify a critical exponent of 2/3.

4.2 Static test charges

Consider, in the dual SYM theory, the interaction between static fundamental-representation

test charges. Focus, for simplicity, on the case of an infinitely heavy quark and antiquark

which are maximally separated — sitting at opposite poles of the S3. The change in free

energy due to inserting the static quark and antiquark is given by (−T times) the loga-

rithm of the expectation value of the Polyakov loop (or Wilson line) correlator, with the

two Polyakov loops sitting at antipodal poles in space.

Roughly speaking, in the dual gravitational description (in the Nc → ∞ and λ →
∞ limits), this Polyakov loop correlator is given by the regularized minimal area of a

string worldsheet with an S1 × S1 boundary, where the S1’s wrap the thermal circle and

are maximally separated in the boundary spacetime. More precisely, the objects that

have simple supergravity descriptions are the supersymmetric extensions of Wilson loops

(“Maldacena loops”). These correspond to adding a line integral of a linear combination of

the SYM scalars to the exponent of the Polyakov loop [31]. Exactly what linear combination

is determined by choosing, arbitrarily, some six-dimensional unit vector, or equivalently

some point in S5. In the dual description, the boundary of the string worldsheet must be

located at the chosen point in the S5 factor of the boundary geometry.

We will focus, for simplicity, on the maximally symmetric case where the Maldacena

loops are located at a pole of the S5, or in other words are maximally separated (in the

boundary geometry) from the D7-brane wrapping an S3 equator of the S5. This choice

preserves the full SO(4) R-symmetry of the SYM theory with fundamental hypermulti-

plets. The antipodal locations of the loops means that the correlator is also invariant

under an SO(3) subgroup of the SO(4) spatial rotation symmetry group, as well as U(1)

time translations.

Given this setup, an extremal string worldsheet, preserving all the symmetries of the

correlator, will be one that stretches across global AdS5 while everywhere sitting at the

pole of the S5. This is illustrated in figure 8 (B.).

If the D7-brane embedding fills the the whole AdS5 space and reaches the center, then

the wrapped S3 ⊂ S5 never collapses to zero volume (so 0 < θ(ρ = 0) < π
2 ), and the D7-

brane never intersects the string worldsheet. This is not the case for D7-brane embeddings

that end outside the center (at some ρ = ρ̄ where θ(ρ̄) = π
2 ). Such D7-branes reach the

pole of the internal S5 and intersect the string worldsheet at ρ̄. This allows the string

to break, so that its worldsheet ends on the D7-brane instead of extending all the way

to the center of global AdS. This is illustrated in figure 8 (A.). Phrased differently, for

Minkowski embeddings of the D7-brane, a maximal-symmetry string worldsheet with an

(S1)
4 boundary exists — with two of the S1’s on the AdS boundary and the other two
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Figure 8. (A.) The disk depicts global AdS5 in S1 × S3 slicing. The perimeter represents the

boundary while the center represents the center of AdS5. The shaded/striped area represents a D7-

brane that ends before reaching the center. The red lines represent two segments of a string, each

stretching from the boundary to the D7-brane’s endpoint. Each of the three circles between (A.) and

(B.) represents the S5. The D7-brane, wrapping an S3 ⊂ S5, is depicted as a black line. The location

of the string(s) is depicted by a red dot. At the boundary, the D7-brane wraps the equatorial S3,

but at its endpoint it reaches the pole of the S5, where the strings also sits (of the circles between

(A.) and (B.), compare the top one and the lower left one). (B.) The same picture as in (A.),

but now the D7-brane does not end at finite radial coordinate, rather it extends all the way to the

center. Indeed, the figure depicts the trivial embedding, in which the D7-brane wraps the equatorial

S3 everywhere. Notice that in this case the string and D7-brane never coincide on the S5.

on the D7-brane at a point of closest approach to the global AdS center. Again, the two

possibilities are depicted in figure 8.

The potential energy of the static quark and antiquark is directly proportional to the

length of the string. The difference in length of the strings in the two configurations is

just the diameter of the “hole” in the center of the D7-brane configuration. For the near-

critical embeddings, this is directly proportional to the scaling parameter µ. Therefore the

difference in the static quark-antiquark potential energy (for this maximally-symmetric

configuration) between near-critical and critical values of the quark mass will proportional

to µ ∼ (m −m∗)1/3 (or (m∗ −m)1/3 for m < m∗)— and thus non-analytic in the quark

mass at m∗.

The behavior of this Polyakov loop correlator has an intuitive explanation in terms of

screening lengths. To understand this, first consider the physics of QCD (in flat space)

at low temperature, where two infinitely massive test quarks will have a flux tube, or

QCD string, stretching between them. The energy E in this QCD string is its tension,

σ, times its length, L: E = σL. The theory also has dynamical quarks, however, which

can cause sufficiently long flux tubes to break. If the test quarks are pulled sufficiently

far apart, then the energy in the string will exceed the point at which the creation of a

dynamical quark-antiquark pair is energetically favorable. In other words, when E > 2m

for a dynamical quark mass m, the string can snap and the single heavy-heavy meson will

decay into two heavy-light mesons. Define a “screening length” as the length Ls at which

the pair production occurs and the QCD string snaps. Equating σLs = 2m, we see that

the screening length is proportional to the mass of the quark, Ls ∝ m.

Now consider the N =4 SYM theory formulated on R
3 coupled to massive N = 2 hyper-
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multiplets. The story is a bit different since the theory is conformal. This implies that the

static quark potential is Coulombic, and vanishes at large separation. Näıvely, one might

think that this would imply that pair production of dynamical massive quarks would never

be energetically favorable. (After all, hydrogen is not unstable to electron/positron pair

creation!) This argument relies on our weak -coupling intuition, however. If the coupling is

sufficiently strong, then the light-heavy binding energy can become comparable to the light

quark mass m. In this regime a heavy-heavy meson, pulled apart to large separation, can

indeed decay to a pair of light-heavy mesons via pair production of a light quark-antiquark

pair. This scenario is sometimes called Gribov confinement [32]. For the N =4 SYM the-

ory, this process was analyzed in detail in ref. [33]. The screening length, beyond which

the system will pair produce dynamical quarks, must by scale invariance be proportional

to the inverse of the light quark mass, Ls ∝ 1/m.

Finally, consider the N = 4 SYM theory formulated on S3 with N = 2 matter. As we

lower the dynamical quark mass we find that at some point this screening length becomes

larger than the diameter of the sphere, Ls > 2R3. Beyond this point, a (maximally sepa-

rated) static quark-antiquark pair is stable against pair production of dynamical quarks.

Our Polyakov loop correlator exhibits precisely this behavior.

4.3 The meson spectrum

In the N = 4 SYM theory coupled to N = 2 matter on S1 × R
3, the first-order phase

transition of the fundamental-representation fields is characterized by “meson melting.”

At low temperature the meson spectrum is gapped and discrete while at high temperature

it becomes gapless and continuous [11, 14, 34]. A natural question for the theory on S3,

then, is what happens to the meson spectrum at the transition we have found?

For conceptual simplicity, and for technical reasons that will become clear shortly, in

this section only we will take the temperature T to be precisely zero. We are allowed to do

so because, as explained above, the D7-brane physics we are interested in is independent

of temperature in the low-temperature phase. We are thus free to take T = 0 and study

the SYM theory formulated on the four-manifold R×S3 with R the (Minkowski-signature,

non-compact) time direction.

At zero temperature we have a simple intuitive picture of what happens. Consider

first the infinite-volume case at finite temperature. If the mass m is fixed and we heat the

system up, stable bound mesons fall apart at the “melting” temperature. What we are

instead doing here may be viewed as fixing the mass and then squeezing the system, at

zero temperature, into smaller and smaller volume and asking what happens to mesonic

bound states as R3 passes through the critical radius R∗
3 = 0.1748

√
λ/m. We expect the

mesons to fall apart as their zero point energy due to confinement within the finite volume

becomes larger than their binding energy.

Before discussing the meson spectrum in detail, we should define precisely what we

mean by a meson mass. On R × S3, a state is classified by its SO(4) angular momentum

l(l + 2), for non-negative integer l, and its energy eigenvalue ω, governing the behavior

under time translations. We will use this energy eigenvalue ω to characterize a meson
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Figure 9. (a.) Scalar meson frequency squared (times the AdS radius squared) versus θ(0). The

critical solution has θ∗(0) = 2.198 and (ω∗)2 = 5.7. (b.) Close-up of (a.) near the critical solution.

Our analytic arguments (confirmed numerically in figure 10) show that the curves behave as (θ(0) −
θ∗(0))

1/3 near the critical solution.

state, and will refer to ω as the meson mass.6 We will only consider states that are in

an l = 0 s-wave on S3, and compute the dependence of ω2 on the quark mass m, or

more precisely (but equivalently) on θ(0). States with higher l are expected to have higher

energy. As explained in ref. [35], the meson spectrum can be computed in the supergravity

description by expanding the DBI action to quadratic order in fluctuations and then solving

the resulting linearized equations of motion. The fluctuations may be those of either the

embedding geometry or of the D7-brane worldvolume gauge fields.

We first study a fluctuation of the D7-brane geometry of the form

θ(ρ) → θ(ρ, t) = θB(ρ) + φ(ρ)eiωt , (4.4)

where θB(ρ) is a static background solution, as computed in section 3.1. This fluctuation

will be dual to a scalar meson in the SYM theory. To determine ω, we employ a shooting

technique in which we fix the boundary condition for φ(ρ) at the AdS boundary and

iteratively adjust ω until the physical boundary condition at the D7-brane endpoint (or the

center) is satisfied. At the AdS boundary, we demand that the fluctuation be normalizable

and hence must scale, in Fefferman-Graham coordinates, as O(ǫ3) with the cutoff z = ǫ. For

D7-branes that reach the center, we then demand that the fluctuation must have vanishing

first derivative at the center. For D7-branes ending away from the center, we require that

the S3 ⊂ S5 collapse without a conical deficit, as explained in section 2.2. Translating the

results into field theory quantities, the resulting spectrum of ω2 versus θ(0) = 4π
√
λmR3

for this scalar meson is shown in figure 9. We see a pronounced kink precisely at the

6In some literature on holographic mesons in flat space, the name “meson mass” is used for the magnitude

of an imaginary spatial wave vector ~k for which an eigenstate of the supergravity small fluctuation operator

exists. These eigenvalues characterize the leading long distance fall-off of equilibrium Euclidean space

correlators in the dual field theory. On S3, no (interesting) analogue of this definition exists. The spatial

(angular) momentum simply takes values l(l + 2) for non-negative integers l; since the space is finite we

have no notion of the asymptotic behavior of correlation functions.
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critical solution, θ(0) = θ∗(0). The kink does not extend down to ω2 = 0; the minimal value

is ω2 ≈ 5.7 times the square of the AdS radius, or equivalently ω2 ≈ 22.8R2
3.

Using scaling symmetry arguments, we can show analytically that this kink in the

scalar meson spectrum has the precise form ω−ω∗ ∼ (m−m∗)1/3 as m→ m∗ (from above

or below). We begin by solving analytically for the fluctuation in the near-center limit. At

zero temperature the action for θ(ρ, t) is

S̃D7 = ND7

∫

dρ dt (cos θ)3 (sinh ρ)3
√

(1 + θ′ 2)(cosh2 ρ− θ̇2) + θ̇2 θ′2 . (4.5)

We take the same near-center limit as in section 3.1, insert eq. (4.4), and expand to

quadratic order in the fluctuation φ(ρ) to find the linearized equation of motion. We

choose the background solution to be the critical solution θB(ρ) = θ∗(ρ) = π
2 + ρ, so the

frequency of the fluctuation is the critical one, ω = ω∗. The resulting equation for φ(ρ),

ρ2 φ′′(ρ) + 6ρφ′(ρ) + (6 + 2ω∗2ρ2)φ(ρ) = 0, (4.6)

has a solution

φ(ρ) =
1

ρ3

[

c∗0 cos
(
√

2ω∗ρ
)

+ c∗1
sin
(√

2ω∗ρ
)

√
2ω∗

]

(4.7)

= c∗0 ρ
−3 + c∗1 ρ

−2 +O(ρ−1) ,

where c∗0 and c∗1 are integration constants. The background is the critical solution, for

which the brane ends at the center, ρ = 0. Normalizability at ρ = 0 requires c∗0 = 0. We

could then fix the value of ω∗ by imposing normalizability at the AdS boundary as follows.

Normalizability at the boundary requires that φ(ρ)’s contribution to the leading, non-

normalizable asymptotic coefficient (which was θ(0) in Fefferman-Graham coordinates) must

vanish. We denote this contribution as

Φ∗(c∗1, ω
∗) = f1(ω

∗) c∗1 +O(c∗21 ) = 0 , (4.8)

where, as indicated, this may be a function of c∗1 and ω∗ and we have linearized in c∗1, which

is taken to be small. We could then solve the equation f1(ω
∗) = 0 to find the value of ω∗.

We next want to find the shifted frequency, ω = ω∗ + δω, of fluctuations of near-

critical solutions. More precisely, we need to determine how δω = ω − ω∗ scales with

µ ∼ (m−m∗)1/3. Near-critical solutions will have nonzero values for c0 and c1 = c∗1 + δc1
so that:

θ(ρ, t) = ρ+ α− ρ
−3 + α+ ρ

−2 + φ(ρ) eiωt (4.9)

= ρ+ (α− + c0 e
iωt) ρ−3 + (α+ + c1 e

iωt) ρ−2 +O(ρ−1) .

We see that c0 must scale the same way as α−, and c1 the same as α+, that is c0 → µ4 c0
and c1 → µ3 c1. To fix the value of ω, we again impose the condition of normalizability at
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Figure 10. (a.) ln |ω − ω∗| (with ω in units of the inverse AdS radius) versus ln |θ(0) − θ∗(0)| for

D7-branes that end at the center, which have θ(0) < θ∗(0) (corresponding to the red curves in the

previous figure). The solid black line is a numerical fit to a functional form C1 +C2 ln |θ(0) − θ∗(0)|.
Our analytic argument predicts C2 = 1/3. The numerical result is C1 ≈ −0.38 and C2 ≈ 0.35. (b.)

The same quantities as in (a.) but now for D7-branes that end away from the center, which have

θ(0) > θ∗(0) (the black curves in the previous figure). The solid black line is a numerical fit of the

same form as in (a.) with the result C1 ≈ −0.24 and C2 ≈ 0.36.

the AdS boundary, which requires that the coefficient Φ(c1, c0, ω) of the non-normalizable

term vanish,

0 = Φ(c1, c0, ω) = f1(ω) c1 + f2(ω) c0 (4.10)

=
[

f1(ω
∗) + f ′1(ω

∗)δω
]

(c∗1 + δc1) +
[

f2(ω
∗) + f ′2(ω

∗) δω
]

c0

= f ′1(ω
∗) δωc∗1 + f2(ω

∗) c0 ,

where we have linearized everything treating δc1, c0 and δω as the same order of smallness

and used f1(ω
∗) = 0. We may immediately solve for δω = ω − ω∗ with the result

ω − ω∗ = −f2(ω
∗)

f ′1(ω
∗)

c0
c∗1
. (4.11)

Notice f2(ω
∗) and f ′1(ω

∗) do not transform under the scaling symmetry: they are just

numbers. Since c0 scales as µ4 while c∗1 scales as µ3, the result of eq. (4.11) shows that

ω−ω∗ ∼ µ ∼ (m−m∗)1/3. Notice that these arguments hold for both m > m∗ or m < m∗

(the results do not depend on whether the near-critical solution in eq. (4.9) has θ(0) > θ∗(0)
or θ(0) < θ∗(0)). Figure 10 shows our numerical data for ln |ω − ω∗| versus ln |θ(0) − θ∗(0)|
and a linear fit to the data, with good agreement between this asymptotic form and the

numerical results.

This non-analytic behavior appears to manifest itself only for the geometric fluctuation

of the embedding function θ(ρ). Solving for the other fluctuation in the geometry (the

other S5 direction orthogonal to the S3) we can compute the spectrum for a second scalar

meson. The result appears in figure 11. We see no kink at θ∗(0). We also computed the

meson spectra corresponding to fluctuations of the D7-brane’s worldvolume gauge field as

described in ref. [35]. These meson spectra are similar to figure 11. In particular, they
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Figure 11. Scalar meson frequency squared (times the AdS radius squared) versus θ(0) for the

meson holographically dual to the second fluctuation of the D7-brane geometry. The punchline here

is that no “kink” appears, in contrast to the spectrum in figure 9.

exhibit no kinks. We confirmed that all of our meson spectra reduce to the known results

of ref. [35] in the limits of either zero or large mass.

4.4 Light string states

In section 4.1, we showed that the third derivative of the free energy F diverges at m∗. In

other words, some three-point coupling in an effective theory describing flavored mesons

in this strongly-coupled SYM theory is diverging as m approaches m∗. One question this

immediately raises is whether this power-law growth of the three-point coupling continues

for arbitrarily small values of m − m∗, and if so, what is the physical meaning of this

singularity? We will argue that for any large, but finite, values of λ, the scaling regime

will be cut off at small values of m−m∗, so the divergence in the three-point coupling is

an artifact of the strict λ→ ∞ limit.

Our evidence comes from the string theory side of the correspondence: the scaling

regime is cut off by stringy corrections. To see this, note that the scalar curvature of the

D7-brane’s induced metric, RD7, in the near-center limit, is

RD7 = −12
δθ2 δθ′ 2 − 3

2 ρ δθ δθ
′ + ρ2

ρ2 δθ2 (1 + δθ′ 2)
. (4.12)

For the critical embedding, δθ∗(ρ) = ρ, the curvature diverges as ρ−2 near the endpoint

ρ = 0. For near-critical solutions, the curvature is finite at the endpoint (or center), but

grows without limit as one approaches the critical solution.7 For branes that reach the

center, δθ′ = 0 at the center and hence RD7 scales as δθ−2. For solutions ending away from

the center, δθ′ diverges, and the curvature at the endpoint scales as ρ−2. Under a scaling

transformation, both ρ and δθ scale as µ, so the curvature in either case will scale as µ−2.

When the scalar curvature of the induced metric becomes of order of the string scale,

α′−1 ≡ ℓ−2
s , stringy corrections to the DBI action will no longer be negligible, and hence

7For the D7-brane in S1
×R

3 slicing (with its first order transition), the scalar curvature also diverges for

the critical solution, but in this case the critical solution lies on an unphysical (infinitely unstable) branch.
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Figure 12. Log of minus the scalar curvature of the D7-brane, ln[−RD7] (in units of the AdS

radius), evaluated at the point of closest approach to the center of AdS, versus asymptotic coefficient

θ(0) in S1×S3 slicing. The red curve represents D7-branes that reach the center, for which ln[−RD7]

is evaluated at the center. The black curve represents D7-branes that end away from the center,

for which ln[−RD7] is evaluated at the endpoint.

our analysis of the scaling behavior (based entirely on the DBI action) will cease to be

valid. In other words, higher order corrections will become important when µ−2 ∼ ℓ−2
s .

These corrections are due to excited open string modes whose mass näıvely goes as ℓ−1
s ,

but whose mass is reduced by a power of µ when the endpoints of the string are in the

high-curvature region. To illustrate this issue graphically, we plot ln[−RD7] in figure 12,

evaluated at the point of closest approach to the center, as a function of the asymptotic

coefficient θ(0).

Using α′−1 ≡ ℓ−2
s ∼

√
λ and µ ∼ (θ(0)−θ∗(0))1/3 = (m−m∗)1/3, the condition µ−2 ∼ ℓ−2

s

becomes (m−m∗) ∼ λ−3/4. The properties of the boundary theory are thus governed by

the critical exponents we calculated above, but only in the range of masses λ−3/4/R3 ≪
(m − m∗) ≪ 1/R3. (Once again, the same relations are true for m < m∗, with m −m∗

replaced by m∗−m, etc.) In particular, in this window the three-point function of the zero-

momentum Om operator grows as (m−m∗)−2/3. This power law growth will eventually be

cut off at the lower end of the scaling window. As λ is a free parameter, however, we are free

to consider the regime where this scaling window extends over arbitrarily many decades.

5 Conclusion

The scaling symmetry of near-center or near-horizon probe Dp-brane solutions in global

AdS has allowed us to determine when phase transitions associated with fundamental-

representation fields coupled to N = 4 SYM theory will be first order or continuous. When

they are continuous, we find that the approach to criticality is governed by non-trivial

critical exponents which can be calculated analytically using the supergravity description.

We emphasize that the phase transitions we have found are finite-volume, large-Nc, and

large-λ effects. The continuous transition we find in the D7-brane case can be interpreted
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as a meson binding/unbinding transition similar to the finite-temperature case analyzed in

previous studies.

A finite volume in the flavored SYM theory can give rise to interesting new effects

in the phase diagram, such as the appearance of our continuous phase transition. We

have only explored a small part of the multi-dimensional phase diagram of this theory.

Probe Dp-brane techniques can be used to study systems at finite density [24, 36–39] or in

background electric and magnetic fields [19, 20, 40–44]. We expect a rich phase structure

to emerge for these systems when confined to finite volume.
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